Physical and genetic interactions link hox function with diverse transcription factors and cell signaling proteins.

نویسندگان

  • Sarah E Bondos
  • Xin-Xing Tan
  • Kathleen S Matthews
چکیده

Positional information provided by Hox homeotic transcription factors is integrated with other transcription factors and cell signaling cascades in specific combinations to dictate context- and gene-specific Hox activity. Protein-protein interactions between these groups have long been hypothesized to modulate Hox functions, yielding a context-specific function. However, difficulties in applying interaction screens to potent transcription factors have limited partner identification. A yeast two-hybrid screen using transcription activation-deficient mutants of the Drosophila melanogaster Hox protein Ultrabithorax IB identified an array of interacting proteins, consisting primarily of transcription factors and components of cell signaling pathways. Interactions were confirmed with wild-type Ultrabithorax (UBX) in phage display experiments and by immunoprecipitation for a subset of partners. In vivo assays demonstrated that two Ultrabithorax IB partners, Armadillo, regulated by Wingless/WNT signaling, and the homeodomain protein Aristaless, inhibit UBX-dependent haltere development from the default wing development pathway. Therefore, transcription factors and cell signaling proteins that subdivide Hox-specified tissues can both alter Hox function in vivo and interact with the corresponding Hox protein in vitro. UBX may also modulate partner function: the pupal death phenotype induced by ectopic expression of the UBX partner Hairy required the presence of UBX. Thus, Hox.transcription factor complexes may integrate a variety of positional cues, generating the specificity and versatility required for context-dependent Hox function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BMP signaling and skeletogenesis.

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-beta superfamily of signal molecules that mediate many diverse biological processes ranging from early embryonic tissue patterning to postnatal tissue homeostasis. BMPs trigger cell responses mainly through the canonical signaling pathway where intracellular Smads play central roles in delivering the extracel...

متن کامل

Recent Advances in T Cell Signaling in Aging

The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...

متن کامل

BMP signaling and HOX transcription factors in limb development.

Limb development, a complicated biological event that includes diverse processes such as three-dimensional patterning, cartilage and bone differentiation and programmed cell death, or apoptosis, is regulated by a network of signal molecules that work in concert to ensure proper morphogenesis. Bone Morphogenetic Proteins (BMPs), members of the TGF superfamily, play a pivotal role in the signalin...

متن کامل

Drosophila melanogaster Hox Transcription Factors Access the RNA Polymerase II Machinery through Direct Homeodomain Binding to a Conserved Motif of Mediator Subunit Med19

Hox genes in species across the metazoa encode transcription factors (TFs) containing highly-conserved homeodomains that bind target DNA sequences to regulate batteries of developmental target genes. DNA-bound Hox proteins, together with other TF partners, induce an appropriate transcriptional response by RNA Polymerase II (PolII) and its associated general transcription factors. How the evolut...

متن کامل

Hox transcription factor ultrabithorax Ib physically and genetically interacts with disconnected interacting protein 1, a double-stranded RNA-binding protein.

The Hox protein family consists of homeodomain-containing transcription factors that are primary determinants of cell fate during animal development. Specific Hox function appears to rely on protein-protein interactions; however, the partners involved in these interactions and their function are largely unknown. Disconnected Interacting Protein 1 (DIP1) was isolated in a yeast two-hybrid screen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2006